REMARKS ON SOME CLASSES OF HOLOMORPHIC FUNCTIONS∗

ROMEO MEŠTROVIĆ∗ AND ŽARKO PAVIĆEVIĆ∗∗

Abstract. Subclasses N^q $(1 < q < \infty)$ of the Nevanlinna class N are characterized. The containment relations with other classes are given. Consequently, we give a criterion for a holomorphic function to be in the space N^q. The canonical factorization theorem for elements of N^q is proved.

1. Introduction

The class N^q $(1 < q < \infty)$ consists of all holomorphic functions f on the open unit disc in the complex plane which satisfy

$$\sup_{0 \leq r < 1} \int_0^{2\pi} \left(\log^+ |f(re^{i\theta})| \right)^q \frac{d\theta}{2\pi} < \infty. \quad (1)$$

These classes are introduced in the first edition of Privalov’s book [4]. In Section 3, we give the inclusion relations between N^q and some other classes of holomorphic functions. Theorem 4.1 and the canonical factorizations, described by 2.2(a) and (b), show that the Smirnov class N^+ may be considered as the ’natural limit’ of classes N^q as $q \to 1$. In the next section, the criteria for belonging to the classes N^q are given. Finally, in Section 5, we give a new proof of the Canonical factorization theorem 2.2(b) given in [4].

2. Preliminary notations, definitions and results

Let D denote the unit disc $|z| < 1$ in the complex plane, and let T denote the boundary of D. Let $d\mu = d\theta/2\pi$ be the usual Lebesgue measure on T, and let $L^p = L^p(\mu)$ $(0 < p \leq \infty)$ be the familiar Lebesgue spaces on the unit circle T.

1991 Mathematics Subject Classification. Primary 30H05, 46J15.
Fix $q > 1$. Following I. I. Privalov (see [4], p. 93, where N^q is denoted as A^q), a holomorphic function $f(z)$ in D belongs to the class N^q, if there holds

$$(2.1) \sup_{0 \leq r < 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} < \infty,$$

where $\log^+ a = \max(\log a, 0)$, $a \geq 0$, and $(\log^+ a)^q = (\log^+ a)^q$.

For $q = 1$, the condition (2.1) defines the Nevanlinna class N of holomorphic functions in D. The Smirnov class N^+ consists of those functions $f \in N$ for which the family $\log^+ |f(re^{i\theta})|$ $(0 \leq r < 1)$, is uniformly integrable on the unit circle T, that is, for a given $\varepsilon > 0$, there exists $\delta > 0$ so that

$$\int_E \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} < \varepsilon, \quad 0 \leq r < 1,$$

for any measurable set $E \subset T$ with $\mu(E) < \delta$.

Recall that the Hardy space H^p $(0 < p \leq \infty)$ consists of all functions f, holomorphic in D, which satisfy

$$\sup_{0 \leq r < 1} \int_0^{2\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi} < \infty$$

if $0 < p < \infty$, and which are bounded when $p = \infty$:

$$\sup_{z \in D} |f(z)| < \infty.$$

As in [2], we denote by M the class of all functions f holomorphic in D, such that

$$\int_0^{2\pi} \log^+ Mf(\theta) \frac{d\theta}{2\pi} < \infty,$$

where

$$Mf(\theta) = \sup_{0 \leq r < 1} |f(re^{i\theta})|.$$

The study on the classes N, N^+ and H^p has been well established (see [1], [3], [4]), as well as on the class M by Hong Oh Kim [2]. Since in the second edition of [4], the part concerning the theory of N^q spaces is not included, we summarize some facts from [4] which will be needed in the sequel. All of them, except 2.2(c), are proved in [4], pp. 79–101, where N, N^+ and N^q are denoted as A, B and A^q, respectively.
2.1. Radial limits. For \(f \in N \), the radial limit
\[
f^\ast(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})
\]
exists for almost every \(e^{i\theta} \) and \(\log |f^\ast| \in L^1 \) unless \(f \not\equiv 0 \).

2.2. Canonical factorization. A function \(f \in N \) can be factored as follows
\[
f(z) = B(z) \left(\frac{S_1(z)}{S_2(z)} \right) F(z),
\]
where \(B(z) \) is the Blaschke product with respect to zeros of \(f(z) \), \(S_k(z) \), \(k = 1, 2, \) are the singular inner functions with no common factor and \(F(z) \) is an outer function for the class \(N \), i.e.
\[
S_k(z) = \exp \left(-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \, d\mu_k(t) \right)
\]
with positive singular measure \(d\mu_k \), \(k = 1, 2 \), and
\[
F(z) = \omega \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |f^\ast(e^{it})| \, dt \right),
\]
where \(\omega \) is a constant of unit modulus.

Then we have the following statements about a function \(f \in N \) with the above factorization.

(a) \(f \) belongs to \(N^+ \) if and only if \(S_2 \equiv 0 \).
(b) \(f \) belongs to \(N^q \) if and only if \(S_2 \equiv 0 \) and \(\log^+ |f^\ast| \in L^1 \).
(c) \(f \) belongs to \(M \) if \(S_2 \equiv 0 \) and \(\log^+ |f^\ast| \in \text{Re } H^1 \). The converse is false (see [2], Theorem 2.2). \(\text{Re } H^1 \) denotes the class of all real parts of the class \(H^1 \), where \(H^1 \) is considered as a space of functions on \(T \) (see [2], [3]).
(d) \(f \) belongs to \(H^p \) \((0 < p < \infty) \) if and only if \(S_2 \equiv 0 \) and \(|f^\ast| \in L^p \).

2.3. Privalov’s theorem. A function \(f(z) \) holomorphic in \(D \) belongs to the class \(N^q \) if and only if for given \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that
\[
\int_E \log^+ |f(re^{i\theta})| \, \frac{d\theta}{2\pi} < \varepsilon, \quad 0 \leq r < 1,
\]
for any measurable set \(E \subset T \), with \(\mu(E) < \delta \), i.e. if and only if \(\log^+ |f(re^{i\theta})| \) \((0 \leq r < 1) \) form a uniformly integrable family.
3. THE INCLUSIONS AMONG THE VARIOUS CLASSES

Theorem 3.1. \(\cup_{q>1} N^q \subset M \subset N^+ \subset N \),
(ii) \(\cup_{s>0} H^s \subset \cap_{q>1} N^q \),
(iii) \(\cup_{q>p} N^q \subset \cap_{1<q<p} N^q \),
for each \(p > 1 \). The above inclusion relations are proper.

Proof of (i). The relation \(M \subseteq N^+ \subseteq N \) is proved in ([2], Theorem 2.1). Let \(f \in N^q \), for some \(q > 1 \). For the proof of the inclusion \(N^q \subseteq M \), by 2.2 (b) and (c), it suffices to show that \(h = \log^+ |f^*| \) belongs to the class \(\text{Re} H^1 \). By Theorem 1.5 of [2], this is equivalent to the condition \(h \in L \log L \), or \(h \log^+ h \in L^1 \), where \(L \log L \) denotes the Zygmund class (see also [3], pp. 135–136). Since \(h \in L^1 \), using the inequality \(\log^+ x \leq x^{\alpha/\alpha} \), \(x \geq 0, \alpha > 0 \), we have

\[
\int_0^{2\pi} \psi(t) \log^+ h(t) \, dt \leq \frac{2}{q-1} \left(\frac{q-1}{2} \int_0^{2\pi} \psi(t) \, dt \right) \in L^1.
\]

Thus, \(h \in L \log L \), which implies that \(\cup_{q>1} N^q \subseteq M \). Now we consider the function

\[
f(z) = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \psi(t) \, dt \right),
\]

where \(\psi(t) \) is a step function defined by

\[
\psi(t) = \begin{cases}
0 & \text{for } t \in (\pi, 2\pi] \\
n^{1-(\log n)^{-1/2}} & \text{for } t \in \left(\frac{2\pi}{n+1}, \frac{2\pi}{n}\right], \ n \in N \setminus \{1\}.
\end{cases}
\]

For fixed \(q > 1 \), we can choose \(n_0 \in N \) such that \(q - q(\log n)^{-1/2} \geq 1 \), for all \(n \geq n_0 \). Then we have

\[
\int_0^{2\pi} \psi(t) \, dt = \sum_{n=2}^{\infty} \frac{n^{q-(\log n)^{-1/2}}}{n(n+1)} \geq \sum_{n=n_0}^{\infty} \frac{1}{n+1} = \infty.
\]

Thus, for each \(q > 1 \) \(\psi^{q+} \neq L^1 \); so that by 2.2 (b), \(f \notin \cup_{q>1} N^q \).

On the other hand, since \(n^{-(\log n)^{-1/2}} = \exp \left(-\sqrt{\log n} \right) \), we have

\[
\int_0^{2\pi} \psi(t) \log^+ \psi(t) \, dt = \sum_{n=3}^{\infty} \frac{\log n}{(n+1) \exp(\sqrt{\log n})} \left(1 - \frac{1}{\sqrt{\log n}} \right) < \sum_{n=3}^{\infty} \frac{6! \log n}{n \log^3 n} < \infty.
\]
Thus $\psi = \log|f^*|$ belongs to the Zygmund class $L\log L$. By Theorem 1.5 of [2] and 2.2 (c), we conclude that $f \in M$. So that $\bigcup_{q>1} N^q \neq M$. □

Proof of (ii). The for each $s > 0$ and $q > 1$ the inclusion $H^s \subseteq N^q$ follows from inequality $\log^{+q} x \leq (q/s)^q x^s$, $x \geq 0$. Hence, $\cup_{s>0} H^s \subseteq \cap_{q>1} N^q$. For the proof of $\cup_{s>0} H^s \neq \cap_{q>1} N^q$, let g be the function defined by

$$g(z) = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log \chi(t) \, dt \right),$$

where $\chi(t)$ is a step function defined by

$$\chi(t) = n^{\log n}, \quad \text{for all } t \in \left(\frac{2\pi}{n+1}, \frac{2\pi}{n} \right], \quad n \in \mathbb{N}.$$

For each $q \geq 1$, we have

$$\int_0^{2\pi} \log^q \chi(t) \frac{dt}{2\pi} = \sum_{n=1}^{\infty} \frac{\log^q n}{n(n+1)} < \infty,$$

since $\log^q n < \sqrt{n}$ for sufficiently large n. So by 2.2 (b), $g \in \cap_{q>1} N^q$.

On the other hand, for each $s > 0$ we have

$$\int_0^{2\pi} |\chi(t)|^s \frac{dt}{2\pi} = \sum_{n=1}^{\infty} \frac{n^{s\log n}}{n(n+1)} = \infty,$$

since $s \log n > 1$ for all $n > \exp(1/s)$. Hence, $\chi \notin L^s$ for any $s > 0$; so that, by 2.2 (d), $f \notin \cup_{p>0} H^p$. This completes the proof of (ii). □

Proof of (iii). The inclusion $N^q \subseteq N^p$, for $q > p > 1$, is obvious. Hence,

$$\bigcup_{q>p} N^q \subseteq N^p \subseteq \bigcap_{1<q<p} N^q.$$

Define

$$F_p(z) = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \xi_p(t) \, dt \right),$$

where

$$\xi_p(t) = \begin{cases}
0 & \text{for } t \in (\pi, 2\pi] \\
\frac{1}{n} \left(1 - (\log n)^{-1/2} \right) & \text{for } t \in \left(\frac{2\pi}{n+1}, \frac{2\pi}{n} \right], \quad n \in \mathbb{N} \setminus \{1\}.
\end{cases}$$
Proceeding as in the proof of (i) we obtain \(\xi_p \in L^p \setminus \bigcup_{q>p} L^q \), and this implies

\[
F_p \in N^p \setminus \bigcup_{q>p} N^q.
\]

For any \(p > 1 \), consider

\[
G_p(z) = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \varphi_p(t) \, dt \right),
\]

where \(\varphi_p(t) = n^{1/p} \) for

\[
t \in \left(\frac{2\pi}{n + 1}, \frac{2\pi}{n} \right), \quad n \in \mathbb{N}.
\]

Then we have

\[
\frac{2\pi}{n+1} \int_0^{2\pi} |\varphi_p(t)|^q \, dt = \sum_{n=1}^{\infty} \frac{n^2}{n(n+1)}.
\]

Clearly \(\varphi_p \in \cap_{1 < q < p} L^q \setminus L^p \); so that, by 2.2 (b), \(G_p \in \cap_{1 < q < p} N^q \setminus N^p \).

This proves (iii), and so the proof of Theorem 3.1 is completed. \(\square \)

4. THE LIMIT RELATIONS IN THE CLASSES \(N^q \)

Theorem 4.1. Let \(q > 1 \) and let \(f \in N \). The following are equivalent statements.

(i) \(f \) belongs to the class \(N^q \).

(ii) \(\lim_{r \to 1} \frac{2\pi}{0} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} = \frac{2\pi}{0} \log^+ |f^*(e^{i\theta})| \frac{d\theta}{2\pi} < \infty \).

(iii) \(f \) belongs to the class \(N^+ \) and \(\log^+ |f^*| \in L^q \).

(iv) \(\log^+ |f^*| \in L^q \) and

\[
\lim_{r \to 1} \frac{2\pi}{0} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} = \frac{2\pi}{0} \log^+ |f^*(e^{i\theta})| \frac{d\theta}{2\pi}.
\]

(v) \(f \) belongs to the class \(M \) and \(\log^+ |f^*| \in L^q \).

Proof. (i) \(\iff \) (ii) Since \(f \in N \), by 2.1 the radial limit \(f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta}) \) exists for almost every \(e^{i\theta} \). By Privalov’s theorem 2.3, \(f \) belongs to \(N^q \) if and only if \(\{ \log^+ |f(re^{i\theta})| \} \) \((0 \leq r < 1) \) form a uniformly integrable family. This is (see [4], p. 13) equivalent to the limit relation (ii) with \(\log^+ |f^*| \in L^q \).

(iii) \(\iff \) (iv) follows in the same way as (i) \(\iff \) (ii), in view of the definition of the class \(N^+ \).
(i) ⇔ (iii) follows immediately from the canonical factorizations described in 2.2(a) and (b).

(v) ⇒ (iii) is obvious, since \(M \subset N^q \).

(i) ⇒ (v) From 2.2 (b) it follows that \(\log^+|f^*| \in L^q \). By Theorem 3.1 (i), \(N^q \subset M \); so that \(f \in M \). This completes the proof of Theorem. □

As a consequence of Theorem 4.1 we obtain the following result which is \(N^q \)-analogue of Smirnov’s theorem for the classes \(H^p \) (Koosis [3]).

Corollary 4.2. Let \(p \) and \(q \) be the numbers such that \(1 < p < q \) and \(f \in N^p \). Then \(f \) belongs to the class \(N^q \) if and only if \(\log^+|f^*| \in L^q \).

Proof. Suppose \(\log^+|f^*| \in L^q \). Since \(f \in N^p \subset N^q \), by (iii) ⇒ (i) of Theorem 4.1, we conclude that \(f \in N^q \). Conversely, if \(f \in N^q \), then by (i) ⇒ (iv), it follows that \(\log^+|f^*| \in L^q \). □

Remark 4.3. We observe that the limit relations (ii) and (iv) of Theorem 4.1 are the analogues of Riesz’s theorem of ([3], p. 61) concerning the classes \(H^p \) \((0 < p < \infty)\).

5. Canonical factorization theorem

We give in this section, another proof of the Canonical factorization theorem 2.2 (b) for the classes \(N^q \) \((1 < q < \infty)\). As an immediate consequence of this proof, we obtain Privalov’s theorem 2.3. We will need the following result.

Lemma 5.1. Let \(q > 1 \) and let \(K \) be a bounded subset of \(L^q \). Then \(K \) forms an uniformly integrable family, i.e. for given \(\varepsilon > 0 \) there exists a \(\delta > 0 \) so that

\[
\int_E |f(\theta)| \frac{d\theta}{2\pi} < \delta \quad \text{for all} \quad f \in K,
\]

whenever \(E \subset T \) with its Lebesgue measure \(\mu(E) < \delta \).

Proof. This is an immediate consequence of (Gamelin [1], Ch. V, Theorem 1.1 and Corollary 1.2, p. 121). □

Lemma 5.2. \(N^q \subset N^+ \).

Proof. Let \(f \in N^q \). By the definition of \(N^q \), the family \(\log^+|f(re^{i\theta})| \) \((0 \leq r < 1)\) is bounded in \(L^q \); so by Lemma 5.1, it is uniformly integrable. Hence \(f \in N^+ \), i.e. \(N^q \subset N^+ \). □

Theorem 5.3 (Canonical factorization theorem 2.2. (b)). A function \(f \in N^q \) can be factored as follows

\[
f(z) = B(z)S(z)F(z),
\]
where $B(z)$ is the Blaschke product with respect to zeros of $f(z)$, $S(z)$ is a singular inner function and $F(z)$ is an outer function for the class N^q, i.e

\[
F(z) = \omega \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |f^*(e^{it})| \, dt \right),
\]

where $|\omega| = 1$, $\log|f^*|$ and $\log^+|f^*|$ belong to L^1. Conversely, every such product $B(z)S(z)F(z)$ belongs to N^q.

Proof. Let $f \in N^q$. By Lemma 5.2, $f \in N^+$. In view of 2.2(a), f can be expressed in the form (5.1), where $S(z)$ is given by (5.2), and $\log|f^*| \in L^1$. By Fatou’s lemma, we have

\[
\int_0^{2\pi} \log^+ |f^*(e^{i\theta})| \frac{d\theta}{2\pi} \leq \liminf_{r \to 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} < \infty,
\]

from which it follows that $\log^+|f^*| \in L^1$.

Conversely, suppose that $f(z)$ is given by (5.1) with $\log|f^*|$, $\log^+|f^*| \in L^1$. Let

\[
P(r, \theta - t) = \frac{1 - r^2}{1 - 2r \cos(\theta - r) + r^2}
\]

denote the Poisson kernel and let $\psi(t) = \log |f^*(e^{it})|$. Then from (5.2) it follows that

\[
\log^+ \left| F(re^{i\theta}) \right| = \left(\int_0^{2\pi} P(r, \theta - t)\psi(t) \frac{dt}{2\pi} \right)^+
\]

\[
\leq \int_0^{2\pi} P(r, \theta - t)\psi^+(t) \frac{dt}{2\pi}.
\]
Since $|f(z)| \leq |F(z)|$ for all $z \in D$, by (5.4) and Hölder’s inequality, for each $0 \leq r < 1$ we have

\[
\begin{align*}
\log^+ q |f(re^{i\theta})| &\leq \left(\int_0^{2\pi} P(r, \theta - t) \psi^+ (t) \frac{dt}{2\pi} \right)^q \\
&\leq \left(\int_0^{2\pi} P(r, \theta - t) \frac{dt}{2\pi} \right)^{q-1} \left(\int_0^{2\pi} P(r, \theta - t) \psi^+ (t) \frac{dt}{2\pi} \right)^q \\
&= \int_0^{2\pi} P(r, \theta - t) \log^+ q |f^*(e^{it})| \frac{dt}{2\pi}.
\end{align*}
\]

Using (5.5) and Fubini’s theorem

\[
\begin{align*}
\int_0^{2\pi} \log^+ q |f(re^{i\theta})| \frac{d\theta}{2\pi} &\leq \int_0^{2\pi} \log^+ q |f^*(e^{i\theta})| \frac{dt}{2\pi} \quad (0 \leq r < 1).
\end{align*}
\]

Thus, in view of $\log^+ q |f^*| \in L^1$, we conclude that $f \in N^q$. This completes the proof of Theorem.

Corollary 5.4 (Theorem 2.3). A function f, holomorphic in D belongs to the class N^q if and only if the family $\log^+ q |f(re^{i\theta})| (0 \leq r < 1)$ is uniformly integrable.

Proof. Suppose that $f \in N^q$. From (5.6) and (5.3) we have

\[
\begin{align*}
\limsup_{r \to 1} \int_0^{2\pi} \log^+ q |f(re^{i\theta})| \frac{d\theta}{2\pi} &\leq \liminf_{r \to 1} \int_0^{2\pi} \log^+ q |f(re^{i\theta})| \frac{d\theta}{2\pi} < \infty.
\end{align*}
\]

Hence there exists

\[
\lim_{r \to 1} \int_0^{2\pi} \log^+ q |f(re^{i\theta})| \frac{d\theta}{2\pi} < \infty.
\]

So by (5.6) and (5.3), we obtain the limit relation

\[
\lim_{r \to 1} \int_0^{2\pi} \log^+ q |f(re^{i\theta})| \frac{d\theta}{2\pi} = \int_0^{2\pi} \log^+ q |f^*(e^{i\theta})| \frac{d\theta}{2\pi} < \infty.
\]

This means that the family $\log^+ q |f(re^{i\theta})| (0 \leq r < 1)$ is uniformly integrable. The converse is obvious. □
References

*University of Montenegro, Maritime Faculty, 85330 Kotor, Yugoslavia

**University of Montenegro, Faculty of Science, P. O. Box 211, 81001 Podgorica, Yugoslavia*