A CHARACTERIZATION OF AN SUBCLASS OF THE SMIRNOV CLASS

ROMEO MEŠTROVIĆ

Abstract. In this paper, we give a short proof of the Canonical factorization theorem for the Class \(N_+^* \) of holomorphic functions, introduced by Privalov with the notation \(C \) in [2]. We prove that the class \(N_+^* \) contains all polynomials, and hence it is a dense subset of the Smirnov class \(N^+ \).

1. Introduction

The Smirnov class \(N^+ \) consists of those functions \(f \) holomorphic on the unit disk \(D \) in the complex plane for which

\[
\lim_{r \to 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} = \int_0^{2\pi} \log^+ |f(e^{i\theta})| \frac{d\theta}{2\pi} < \infty.
\]

(The boundedness of the integrals on the left implies that \(f \) is in the Nevanlinna class \(N \), and so has non-tangential limits almost everywhere on the unit circle. It is this boundary function that we mean in the second integral).

As in [2, p. 89], where \(N_+^* \) is denoted as \(C \), a function \(f \in N \) is said to belong to the class \(N_+^* \) if there holds

\[
\lim_{r \to 1} \int_0^{2\pi} \log |f(re^{i\theta})| \frac{d\theta}{2\pi} = \int_0^{2\pi} \log |f(e^{i\theta})| \frac{d\theta}{2\pi} < \infty,
\]

which is equivalent to the fact that the family \(\{ \log |f(re^{i\theta})| : 0 \leq r < 1 \} \), is uniformly integrable if \(r \) is near to 1. This means (see [3,
that for given $\varepsilon > 0$, there exists $\delta > 0$ and $r_0 < 1$ so that

$$\int_E \left| \log |f(re^{i\theta})| \right| \frac{d\theta}{2\pi} < \varepsilon \quad (r_0 < r < 1),$$

whenever $E \subset [0, 2\pi]$ with its Lebesgue measure $|E| < \delta$.

By [1, p. 25], every function f of class N can be factored as

$$f(z) = B(z)\left(S_1(z)/S_2(z)\right)F(z),$$

where $B(z)$ is the Blaschke product with respect to zeros of $f(z)$, $S_k(z)$, $k = 1, 2$, are the singular inner functions with no common factor and $F(z)$ is an outer function for the class N, i.e.,

$$S_k(z) = \exp \left(-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu_k(t) \right)$$

with positive singular measures $d\mu_k$, $k = 1, 2$, and

$$F(z) = \omega \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |f(e^{it})| \, dt \right),$$

with ω a constant of unit modulus. Furthermore $\log |f(e^{it})| \in L^1(0, 2\pi)$ unless $f \equiv 0$. It is known that a function $f \in N$ belongs to N^+ if and only if $S_2 \equiv 0$. See, e.g., [1, p. 26] or [2, p. 89]. It was showed in Privalov [2, pp. 90-93] that a function $f \in N$ belongs to N^+_s if and only if $S_1 \equiv 0$ and $S_2 \equiv 0$. This means that $f \in N^+_s$ cannot have a (nontrivial) singular factor.

In the next section, using a result of Stoll [4], we obtain a simple proof of this Canonical factorization. In Section 3, we observe that all univalent function is in class N^+_s. In Section 4, we show that the polynomials are dense in N^+_s, and therefore N^+_s is a dense topological multiplicative submonoid of N^+.

2. A factorization theorem for the class N^+_s

Theorem 2.1 ([2, Sec. 9.2, p. 93]) Every function $f \in N^+_s$ has a unique factorization of the form

$$f(z) = B(z)F(z),$$

where $B(z)$ is the Blaschke product with respect to zeros of $f(z)$, and $F(z)$ is an outer function. Conversely, every such product $B(z)F(z)$ belongs to N^+_s.
For the proof of the Theorem, we will need three Lemmas. The following result was proved by Stoll [4, Theorem 4], for an arbitrary bounded symmetric domain D in \mathbb{C}^m with Bergman-Shilov boundary B and $0 \in D$.

Lemma 2.2. If $F \in N^+$ is outer, then

\[
\lim_{r \to 1} \int_0^{2\pi} \left| \log |F(re^{i\theta})| - \log |F(e^{i\theta})| \right| \frac{d\theta}{2\pi} = 0.
\]

Conversely, if $F \in N^+$, $F(z) \neq 0$ for all $z \in D$, satisfies (2.1) then F is outer.

The following lemma follows immediately from [1, p. 21, Lemma 1] and the definition of N^+_s.

Lemma 2.3. Every function $F \in N^+_s$ satisfies the condition (2.1) from Lemma 2.2.

The following lemma is proved in the proof of Theorem 2.10 of [1, p. 26], which is in fact the factorization theorem for elements of the Smirnov class N^+.

Lemma 2.4 If $B(z)$ is an arbitrary Blaschke product, then

\[
\lim_{r \to 1} \int_0^{2\pi} \log |B(re^{i\theta})| \frac{d\theta}{2\pi} = 0.
\]

Proof of Theorem 2.1. Suppose first that $f \in N^+_s$. Since $N^+_s \subset N^+$, f can be factored in the form $f = BSF$, where B, S, F are as above. Put $G = SF$. By the inequality $|\log |xy|| \leq ||\log |x|| + ||\log |y||$, and the fact that $|B(z)| < 1$, we have

\[
\int_E \left| \log |G(re^{i\theta})| \right| \frac{d\theta}{2\pi} \leq \int_E \left| \log |f(re^{i\theta})| \right| \frac{d\theta}{2\pi} - \int_0^{2\pi} \log |B(re^{i\theta})| \frac{d\theta}{2\pi}
\]

for any measurable set $E \subset [0, 2\pi)$. From this and Lemma 2.4, we see that $\left\{ \left| \log |f(re^{i\theta})| \right| : r \to 1^- \right\}$ form a uniformly integrable family in the sense of (1.1). Hence G is in N^+_s, and by Lemma 2.3, G satisfies
(2.1). Since $G(z) \neq 0$ for all $z \in D$, by Lemma 2.2, we conclude that G is outer. Therefore $f = BG$, as desired.

Conversely, assume that $f = BF$, where $B(z)$ is the Blaschke product with respect to zeros of $f(z)$, and $F(z)$ is an outer function. Then for any measurable set $E \subset [0, 2\pi)$, we have

$$
\int_E \log |f(re^{i\theta})| \frac{d\theta}{2\pi} \leq \int_E \log |F(re^{i\theta})| \frac{d\theta}{2\pi} - \int_E \log |B(re^{i\theta})| \frac{d\theta}{2\pi}
\leq \int_0^{2\pi} \left[\log |F(re^{i\theta})| - \log |F(e^{i\theta})| \right] \frac{d\theta}{2\pi}
+ \int_E \log |F(e^{i\theta})| \frac{d\theta}{2\pi} - \int_E \log |B(re^{i\theta})| \frac{d\theta}{2\pi},
$$

whence by Lemmas 2.2 and 2.4, we conclude that $\left\{ |\log |G(re^{i\theta})|| : r \to 1^- \right\}$ form a uniformly integrable family (in the sense of (1.1)). Thus f is in N^+_\ast, which completes the proof of Theorem. \qed

3. A CHARACTERIZATION OF UNIVALENT FUNCTIONS

A function holomorphic in a domain is said to be schlicht (or univalent) if it does not take any value twice; that is, if $f(z_1) \neq f(z_2)$ whenever $z_1 \neq z_2$. Let $H^p (0 < p \leq \infty)$ denote the classical Hardy space on the unit disk D. It is known (see [1, pp. 50–51]) that if f is holomorphic and schlicht in D, then $f \in H^p$ for all $p < 1/2$, and its singular factor $S(z) \equiv 1$. As an immediate consequence of this fact and Theorem 2.1, we obtain the following result.

Corollary. 3.1. If f is holomorphic and schlicht in D, then f belongs to the class N^+_\ast.

4. \(N_s^+ \) as a Dense Subclass of \(N^+ \)

The space \(N^+ \) with the metric \(\rho \) given by

\[
(4.1) \quad \rho(f, g) = \int_0^{2\pi} \log \left(1 + \left| f(e^{i\theta}) - g(e^{i\theta}) \right| \right) \frac{d\theta}{2\pi}
\]

is an \(F \)-algebra, i.e., a topological vector space with a complete translation invariant metric in which multiplication is continuous (see [5] and [4]).

For any \(f \in N^+ \) put \(fr(z) = f(rz) \) \((0 < r < 1)\). Then by [5, Lemma 3], \(\rho(fr, f) \to 0 \) as \(r \to 1^- \). Since \(fr \) can be uniformly approximated by polynomials on the closed unit disk, it can be approximated in \(N^+ \) by polynomials. Hence, the polynomials are dense in \(N^+ \). By the inequality \(\left| \log |xy| \right| \leq \left| \log |x| \right| + \left| \log |y| \right| \), we see that \(N_s^+ \) is a multiplicative monoid. The following theorem shows that \(N_s^+ \) is separable, but is not complete with respect to the metric \(\rho \) given by (4.1).

Theorem 4.1. \(N_s^+ \) contains the set of all polynomials. Therefore, \(N_s^+ \) is a dense topological submonoid of \(N^+ \).

Proof. Since \(N_s^+ \) is a multiplicative monoid, it is sufficient to show that \(N_s^+ \) contains all polynomials of the form \(z - \alpha \) with a complex number \(\alpha \). It is easy to see that \(z - \alpha \) is in \(N_s^+ \) for all \(\alpha \) such that \(|\alpha| \neq 1 \). It is known (see [3, p. 85]) that the function \(\log (1/(1-z)) \) is in \(\bigcap_{0<p<\infty} H^p \), and hence \(\log (1/(e^{ic} - z)) \) is in \(H^1 \) for all real number \(c \). By the mean convergence theorem [1, p. 21] and the inequality \(\left| \log |\xi| \right| \leq \left| \log |\xi| \right| \), we conclude that the family \(\left\{ \left| \log (e^{ic} - re^{i\theta}) \right| : 0 \leq r < 1 \right\} \) is uniformly integrable. Therefore, \(z - e^{ic} \) is in \(N_s^+ \) for all real number \(c \). This completes the proof. \(\square \)

References

CHARACTERIZATION OF AN SUBCLASS OF THE SMIRNOV CLASS

*University of Montenegro, Maritime Faculty, 85330 Kotor, Yugoslavia

University of Montenegro, Maritime Faculty, 85330 Kotor, Yugoslavia